Questions taken from the AQA Specimen Paper 2

NOTE: JACK BROWN HAS A FULL SET OF VIDEO SOLUTIONS FOR THIS PAPER ON YOUTUBE

3	Correctly applies a single law of logs with either term	AO1.1a	M1	$\log_a(a^3) + \log_a\left(\frac{1}{a}\right) = 3 + (-1)$
	States correct final answer (NMS scores full marks)	AO1.1b	A1	= 3 - 1 = 2
	Total		2	

4	Selects an appropriate method – either differentiates, at least as far as: $\frac{\mathrm{d}y}{\mathrm{d}x} = 2x$ or commences completion of the square: $\left(x - \frac{5}{2}\right)^2 +$	AO1.1a	M1	$y = \left(x - \frac{5}{2}\right)^2 - \frac{25}{4} + a$ $y \text{ minimised when squared bracket is 0}$ $\left(\frac{5}{2}, a - \frac{25}{4}\right)$ ALT $\frac{dy}{dx} = 2x - 5$
	Fully differentiates and sets derivative equal to zero or fully completes square Allow one error	AO1.1a		dx so $2x - 5 = 0$ for minimum $x = \frac{5}{2}$
	Obtains both coordinates	AO1.1b	A1	$y = \left(\frac{5}{2}\right)^2 - 5\left(\frac{5}{2}\right) + a = a - \frac{25}{4}$
	Total		3	

6	States a correct integral expression (ignore limits at this stage)	AO1.1a	M1	Area = $\int_{a}^{2a} \left(6x^2 + \frac{8}{x^2} \right) dx$
	Integrates at least one term correctly	AO1.1b	A1	$= \left[2x^3 - \frac{8}{x}\right]_a^{2a}$
	Substitutes $2a$ and a into 'their' integrated expression	AO1.1a	M1	$= (16a^3 - \frac{4}{a}) - (2a^3 - \frac{8}{a})$
	States correct final answer with terms collected FT correct substitution into incorrect integral provided both M1 marks awarded	AO1.1b	A1F	$= 14a^3 + \frac{4}{a}$
	Total		4	

Q	Marking Instructions	AO	Marks	Typical Solution
8	Explains clearly that $f(x)$ is increasing $\Leftrightarrow f'(x) > 0$ (for all values of x) or Explains $\Rightarrow f(x)$ is increasing $f'(x) > 0$ for all values of x This may appear at any appropriate point in their argument	AO2.4	E1	For all x , $f'(x) > 0 \Rightarrow f(x)$ is an increasing function $f(x) = x^3 - 3x^2 + 15x - 1$ $\Rightarrow f'(x) = 3x^2 - 6x + 15$ $\Rightarrow f'(x) = 3(x - 1)^2 + 12$ $\therefore f'(x) \text{ has a minimum value of } 12$ therefore $f'(x) > 0$ for all values of x
	Differentiates – at least two correct terms	AO1.1a	M1	OR for $f'(x)$, $b^2 - 4ac = -144$ $\therefore f'(x) \neq 0$ for any real x , so $f'(x)$ is either always positive or always
	All terms correct	AO1.1b	A1	negative.
	Attempts a correct method which could lead to $f'(x) > 0$	AO3.1a	M1	f'(0) = 15 therefore $f'(x) > 0$ for all values of x
	Correctly deduces $f'(x) > 0$ (for all values of x)	AO2.2a	A1	f''(x) = 6x - 6, which = 0 when $x = 1so min f'(x) is f'(1) = 12therefore f'(x) > 0 for all values of x$
	Writes a clear statement that links the steps in the argument together, the deduction about a positive gradient for all values of x proves that the given function is increasing for all values of x	AO2.1	R1	Thus, since, $f'(x) > 0$ for all values of x it is proven that $f(x)$ is an increasing function.
	Total		6	

Q	Marking Instructions	AO	Marks	Typical Solution
9	States the correct gradient of the curve	AO1.2	B1	Grad of curve = 2e ^{2x}
	Forms an equation using 'their' gradient of the curve and puts it equal to $\frac{1}{2}$	AO1.1a	M1	= grad of tangent so $2e^{2x} = \frac{1}{2}$
	Takes a log of each side of 'their' equation and uses law of logs to obtain equation in x	AO1.1a	M1	$e^{2x} = \frac{1}{4} \Rightarrow 2x = \ln\left(\frac{1}{4}\right)$
	Obtains a correct exact value for x	AO1.1b	A1	$\Rightarrow x = \frac{1}{2} \ln \left(\frac{1}{4} \right) = \ln \left(\frac{1}{2} \right) = -\ln 2$
	Substitutes 'their' value of x and obtains y value and hence the coordinates (follow through provided values are exact)	AO1.1b		$y = e^{2x} = \frac{1}{4}$ $\left(-\ln 2, \frac{1}{4}\right)$
	Total		5	

	-	<u> </u>	 	 ••
10(a)(i)	States correct value CAO	AO3.4	B1	50
(a)(ii)	States correct integer value CAO	AO3.4	B1	609
(b)	Forms correct equation and rearranges to obtain $e^{0.5t} =$	AO3.4	M1	$150 = 50e^{0.5t}$ so $e^{0.5t} = 3$
	Obtains the correct solution. Must give answer to 3 sf	AO1.1b	A1	t = 2ln 3 = 2.20
(c)	1 mark for any clear valid reason, must be set in context of the question	AO3.5b	E1	No constraint on the number of rabbits (ie could go off to infinity) OR Model is only based on the 3 years of the study. Things may change OR Continuous model but number of rabbits is discrete OR Ignores extraneous factors such as disease, predation, limited food supply
(d)	Forms an equation with exponentials by letting $R = C$	AO3.4	M1	$1000e^{0.1t} = 50e^{0.5t}$ $20 = e^{0.4t}$
	Solves 'their' equation correctly	AO1.1a	M1	$t = \ln 20 \div 0.4$ $= 7.49$
	States correct answer as the year 2023 CAO	AO3.2a	A1	2023
	NMS scores full marks for 2023			
	Total		8	

Q	Marking Instructions	AO	Marks	Typical Solution
19(a)(i)	Obtains probability from calculator	AO3.4	B1	$P(X \le 2) = 0.678$
(a)(ii)	Obtains either of these figures (0.8791, 0.1074) PI	AO3.4	M1	$P(X \le 3) = 0.8791$ P(X = 0) = 0.1074
	Obtains correct probability	AO1.1b	A1	$P(1 \le X \le 3) = 0.8791 - 0.1074$ $= 0.772$

If you just found the correct answer to 19(a)(ii) from your calculator without showing any working out, this is fine.

(b)(iii)	States both hypotheses using correct notation	AO2.5	B1	$H_0: p = 0.2$ $H_1: p > 0.2$
	States or uses B(25, 0.2) PI	AO3.3	M1	Under H_0 , use $X \sim B(25, 0.2)$ (where X represents number of students eating 5 or more portions)
	Obtains correct probability	AO1.1b	A1	$P(X \ge 8) = 0.109$
	Evaluates model by comparing $P(X \ge 8)$ with 0.05 (condone 0.0468/0.047 used instead of 0.109)	AO3.5a	M1	0.109 > 0.05 Hence accept H ₀
	Infers H₀ accepted	AO2.2b	A1	No significant evidence that more than 20% eat at least five a day
	States correct conclusion in given context	AO3.2a	E1	